勾股定理最早是谁提出的

生活经验015

本文目录

勾股定理最早是谁提出的,第1张

  1. 勾股定理发明时间?
  2. 提出勾股定理的是哪本书?
  3. 勾股定理到底是谁发明的?
  4. 最早用几何方法证明了勾股定理的人是三国的谁?
  5. 勾股定理是谁提出?

勾股定理发明时间?

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

提出勾股定理的是哪本书?

是《周髀算经》

勾股定理最早应该是周朝数学家商高提出来的。公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

勾股定理到底是谁发明的?

勾股定理最早应该是周朝数学家商高提出来的。公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

最早用几何方法证明了勾股定理的人是三国的谁?

著名的勾股定理是西周数学家商高最早提出来的,称商高定理.早在公元前11世纪的西周初期,数学家商高曾与辅佐周成王的周公谈到直角三角形具有这样的一个性质:如果直角三角形的两个直角边分别为3和4,则这个直角三角形的斜边为5.利用商高的方法,很容易得到更一般的结论:在直角三角形中,两条直角边的平方和等于斜边的平方.这就是勾股定理或商高定理,西方称之为毕达哥拉斯定理.

勾股定理是谁提出?

股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。

在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。