各位老铁们,大家好,今天由我来为大家分享三阶行列式的值,以及三阶行列式的值怎么求的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注搜藏下本站,您的支持是我们更大的动力,谢谢大家了哈,下面我们开始吧!
本文目录:
三阶行列式a的最大值
当各元素都是 1 时,A=1+1+1-1-1-1=0 ;
当其中某一元素改变符号时,它必然导致包含该元素的展开项的某两项同时改变符号,所以 行列式的值就等于 0 ——没有什么极大值极小值!
其实,若不作这样的分析,三阶行列式展开就6项,每项的绝对值为 1 ,最大值最多也就是 6 。
如何求解三阶行列式的值?
可按照代数余子式的解法,三阶行列式可以改写成三个系数分别乘三个二阶行列式。如果希望最后变成两个二阶行列式,要么其中一个系数为0,要么其中一个二阶行列式为0。
其中一个系数为0,即存在某行某列元素为0,进一步说就是存在某行某列能通过消元之后为0,所以,只要消元出至少含一个0的三阶矩阵就可以了。
其中一个二阶行列式为0,就是存在交叉项乘积相减为0,ad=bc,a/b=c/d。其实这个和上一个条件本质是一样的,就是可以通过系数变化得出能消元的两项,就是该三阶矩阵能消元出来一个0。
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式的性质:
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、行列式A中两行(或列)互换,其结果等于-A。
4、 若n阶行列式|αij|中某行(或列),行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn,另一个是с1,с2,…,сn,其余各行(或列)上的元与|αij|的完全一样。
5、把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
三阶行列式 的值是 .
分析: 根据求行列式的方法化简即得. 三阶行列式=cosαcosα+sinαsinα=1原式=1.故答案为:1 点评: 考查学生掌握行列式化简方法的能力.属于基础题.
三阶行列式是什么?如何计算?
关于三阶行列式的计算,首先给出一个实例,A、B、C、D、E、F、G、H、I都是数字。先按斜线计算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH再按斜线计算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF行列式的值就为(AEI+BFG+CDH)-(CEG+DBI+AHF) 然后说一下这个公式。看你不知道行列式是啥玩意,那估计你也不知道行列式的性质,就这个公式而言,主要用到的是把行列式的某一行(列)的任意(非零)倍加到另一行(列)上,行列式的值不变 面积公式是这个样子,外面的短竖线是绝对值符号,里面的长竖线是行列式符号,A(X1,Y1),B(X2,Y2),C(X3,Y3)是三个顶点的坐标,按照上面提到性质,公式变为这里把第一行的负一倍分别加到了二三行这个行列式的值其实和是一样的,这利用的是行列式求值的性质,你可以按照开头的三阶行列式方法计算检验。顺便提一提,i,j,k分别是X,Y,Z轴的单位向量。上面这个行列式行列式表示的其实是这个1/2 |AB||AC|sinA 这个相当于公式S=1/2 ac sinB,只是换成了角A的夹边。原因是向量AB和向量AC(向量应该知道吧)的外积就是说到外积,与内积不同的地方是,内积得到的是一个数比如(内积用点乘号)AB · AC = (x2-x1)(x3-x1)+(y2-y1)(y3-y1) 【内积是对应坐标乘积的和】而外积得到的是一个向量比如(外积用叉乘号)AB X AC= 【外积是用行列式计算的】这是一个向量不是一个数,因为i,j,k都是向量他的模应该是|AB X AC| = |AB||AC|sinA 【内积是AB·AC=|AB||AC| cosA】所以前面说短竖线是绝对值不是很准确,其实是向量求模的符号。至此这个公式解说完了。 最后,这个公式是相当的恶心,没什么实际作用,不知道是哪个混球想出来的,知道三点坐标的情况下,按照线段长度公式求AB,AC,利用内积求夹角的余弦值,再转换为正弦值,最后应用公式S=1/2 bc sinA 整个计算过程和直接用行列式的那个公式相比,看起来复杂不少,其实,一般数据简单的情况下,计算量远远前者小于后者。
三阶行列式的值等于什么?
1、标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。
这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的对角线上的三个数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。
2、行列式某元素的余子式:行列式划去该元素所在的行与列的各元素,剩下的元素按原样排列,得到的新行列式.
3、行列式某元素的代数余子式:行列式某元素的余子式与该元素对应的正负符号的乘积.
4、三阶行列式运算:即行列式可以按某一行或某一列展开成元素与其对应的代数余子式的乘积之和
三阶行列式计算公式是什么?
三阶行列式可用对角线法则:D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
|a11 a12 a13|=a11a22a33-a11a23a32+a12a23a31-a12a21a33+a13a32a21-a13a22a31,a21 a22 a23。
a31 a32 a33,=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31。
a1*(a1的余子式):
某个数的余子式是指删去那个数所在的行和列后剩下的行列式。
行列式的每一项要求:不同行不同列的数字相乘如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在 b2 b3 c2c3中找)。
而a1(b2·c3-b3·c2) - a2(b1c3-b3·c1) + a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它第一行的每一个数乘以它的余子式,或等于第一列的每一个数乘以它的余子式,然后按照 + - + - + -......的规律给每一项添加符号之后再做求和计算。
好了,关于三阶行列式的值和三阶行列式的值怎么求的问题到这里结束啦,希望可以解决您的问题哈!