BP算法的原理

生活经验037

本文目录

BP算法的原理,第1张

  1. bp神经网络算法陷入了局部最小值怎么办?
  2. 花瓣算法是什么?
  3. BP 3要素是啥?
  4. bp网络建模特点?
  5. Pb神经网络的优势?

bp神经网络算法陷入了局部最小值怎么办?

使用改进的BP算法,增加动量项,或者自适应学习率。 和别的优化算法组合,例如遗传算法优化初始权值,提前锁定全局最优。 重新训练,每次训练的结果都是不同的,下一次的训练很有可能不会陷入局部极小。 更改学习函数、训练函数再试。

花瓣算法是什么?

花瓣算法是最基础的一个分类算法

分类算法,主要思想如下:一个样本在特征空间中的k个最近邻的样本中的大多数都属于某一个类别,则该样本也属于这个类别。这种算法采用非线性规划中的最速下降方法,按误差函数的负梯度方向修改权系数。 为了说明BP算法,首先定义误差函数e。取期望输出和实际输出之差的平方和为误差函数。

BP 3要素是啥?

BP三要素分别是:

网络拓扑结构;2)传递函数;3)学习算法。

bp网络建模特点?

bp是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

Pb神经网络的优势?

多层前向BP网络的优点:

网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题;

网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;

网络具有一定的推广、概括能力。

多层前向BP网络的问题:

BP算法的学习速度很慢,其原因主要有:

由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;

存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;

为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。

网络训练失败的可能性较大,其原因有:

从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;

网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。

难以解决应用问题的实例规模和网络规模间的矛盾。这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;

网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题;

新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;

网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的