库伦效率的意义

生活经验025

本文目录

  1. 碳负极材料都有哪些?
  2. 锂离子负极材料的要求及其结构特点?
  3. 包覆沥青国家标准?
  4. 锌离子电池好处?
  5. 首次库仑效率说明什么?

碳负极材料都有哪些?

碳负极材料有多种,主要包括天然石墨、人造石墨、硬碳、软碳、碳纳米管、石墨烯等。

天然石墨

库伦效率的意义,第1张

石墨由平行碳六边形构成,是具有片层结构的晶体。原子间为sp2杂化成键,分子层间由范德华力连接,每层电子成键使其导电性高。由于锂在石墨中的低嵌锂电位,而石墨层间距远大于锂离子半径,促使锂离子嵌入脱出层间,形成LixC6化合物,因此成为理想的锂离子电池负极碳材料。

天然石墨可分为鳞片石墨和土状石墨,负极材料通常采用鳞片石墨。天然石墨理论比容量低,表面性质不均匀导致石墨片层剥落,首次循环效率低,充放电循环性能较差。因此,需要对天然石墨进行改性,常用方法有:表面处理法、表面包覆法、掺杂改性法等。

人造石墨

人造石墨是将易石墨化碳(石油焦、针状焦、沥青等)在一定温度下煅烧,再经粉碎、成型、分级、高温石墨化制得的石墨材料。人造石墨避免了天然石墨的表面缺陷,但仍存在因晶体各向异性导致倍率性能差,低温性能差,充电易析锂等问题。人造石墨改性方式不同于天然石墨,一般通过颗粒结构的重组实现降低石墨晶粒取向度(OI值)的目的。通常选取直径8-10μm的针状焦前驱体,采用沥青等易石墨化材料作为粘结剂的碳源,通过滚筒炉处理,使数个针状焦颗粒粘合,制成粒径D50范围14-18μm的二次颗粒后完成石墨化,有效降低材料OI值。

中间相炭微球(MCMB)和石墨化碳纤维(GF)是典型的人造石墨。

①中间相炭微球

中间相炭微球(MCMB)微观结构为球形片层颗粒。沥青类化合物热处理时,发生热缩聚反应生成具有各向异性的中间相小球体,把中间相小球从沥青母体中分离出来形成的微米级球形碳材料就称为中间相炭微球。中间相炭微球负极在锂离子电池中具有电极压实密度高及可大电流快速充放电的性能优势。但是,中间相炭微球边缘的碳原子经Li+反复插入脱出容易导致碳层剥离和变形,引发容量衰减,表面包覆工艺能有效抑制剥离现象。目前,对中间相炭微球的研究大多数集中在表面改性、与其它材料复合、表面包覆等。

②石墨化碳纤维

石墨化碳纤维主要通过酚醛树脂、聚丙烯腈、中间相沥青纤维等经高温处理后得到。此种碳材料储锂可逆性好,首次库仑效率高达97%,且锂离子扩散系数比天然石墨约高一个数量级,但其可逆容量低于天然石墨。石墨化碳纤维的直径一般为200-500nm,具有类似于树木年轮的同轴结构,石墨化片层取向性高。有研究人员通过2200℃热处理制备石墨化碳纤维,其首次插锂比容量达350.5mAh/g,但首次不可逆容量高达202.4mAh/g。如此高的首次不可逆容量主要是由于纤维具有很大的比表面积,与电解液发生副反应引起。相比于中间相炭微球、天然石墨而言,石墨化碳纤维生产成本高,目前在锂离子电池负极材料方面的研究不多。

硬碳

硬碳是难以石墨化的碳,通常为高分子材料热裂解制得。硬碳以其无规排序所具有的较高容量、低造价和优良循环性能引起了人们的极大兴趣。常见的硬碳有树脂碳(如酚醛树脂、环氧树脂和聚糠醇PFA-C等)、有机聚合物热解碳(如PFA、PVC、PVDF和PAN等)和炭黑(乙炔黑)等。SONY公司于1991年开发了使用聚糠醇(PFA)热裂解制得的硬碳作为负极材料的锂离子电池。但是其不可逆容量过大,放电电压过高导致放电充电曲线滞后。硬炭材料作为锂离子电池负极时,具有比容量高、使用寿命长、较好的倍率性能以及较低的生产成本等优点,但同时也存在首次不可逆容量大、电压滞后效应明显以及振实密度低等缺点,所以商业化进程比较艰难。

软碳

软碳又称为易石墨化碳材料,是指在2500℃以上的高温下能石墨化的无定形碳材料。一般而言,根据前驱体烧结温度的区别,软碳会产生3种不同的晶体结构,分别是无定形结构、湍层无序结构和石墨结构,石墨结构也就是常见的人造石墨。其中无定形结构由于结晶度低,层间距大,与电解液相容性好,因此低温性能优异,倍率性能良好,从而受到人们的广泛关注。软碳首次充放电时不可逆容量较高,输出电压较低,无明显的充放电平台,因此一般不独立作为负极材料使用,通常作为负极材料包覆物或者组分使用。

碳纳米管

碳纳米管是一种具有较完整石墨化结构的特殊碳材料,具有结构独特(石墨片的一维圆柱管)、低密度、高刚性、高抗拉强度以及高电导率等特点。碳纳米管的可逆容量范围为300-600mAh/g,它的容量高于石墨。碳纳米管的形态使其可以替代石墨作为商用锂离子电池负极材料。碳纳米管是由单层或多层同轴炭片层组成的“具有类似于石墨层状结构”的材料。碳纳米管的sp2杂化结构以及高的长径比为其带来了一系列优异性能。这种微观结构使得锂离子的嵌入深度小、行程短及嵌入位置多(管内和层间的缝隙、空穴等),同时因碳纳米管导电性能很好,具有较好的电子传导和离子运输能力,适合作为锂离子电池负极材料。

采用碳纳米管直接作为锂离子电池负极材料也存在不足之处,一是第一次不可逆容量较大,首次充放电效率比较低。二是碳纳米管负极缺乏稳定的电压平台。三是碳纳米管存在电位滞后现象。这些问题制约了碳纳米管在锂离子电池负极材料方面的应用。

目前碳纳米管的研究主要集中在复合材料的制备及其电化学性能方面,例如碳纳米管与硅、金属氧化物的复合等等。此外,碳纳米管作为新型材料,在合格生产上有很多要求,例如直径、层数、长度、缺陷程度和电子特性等都是重要因素,其生产方法也需要进一步完善。

石墨烯

石墨烯是材料科学和凝聚态物理领域迅速崛起的新星。这种二维材料具有极高的晶体和电子品质,尽管其发展历史不长,但已经拥有潜在的应用前景。石墨烯较其他碳基负极材料相比,其片层两边可有效吸附锂离子,扩增储锂容量,可达石墨的2倍,且其无规则排列增加的微孔也可增强储锂量,而且石墨烯力学强度、电荷迁移率、导电率等性能较优,其特有的高柔韧性及长径,也让其具备作为锂离子电池负极材料的潜能。

锂离子负极材料的要求及其结构特点?

负极材料作为锂离子电池的核心部件,在应用时通常要满足以下条件:①嵌锂电位低且平稳,以保证较高的输出电压;

②允许较多的锂离子可逆脱嵌,比容量较高;

③在充放电过程中结构相对稳定,具有较长的循环寿命;

④较高的电子电导率、离子电导率和低的电荷转移电阻,以保证较小的电压极化和良好的倍率性能;

⑤能够与电解液形成稳定的固体电解质膜,保证较高的库仑效率;

⑥制备工艺简单,易于产业化,价格便宜;

⑦环境友好,在材料的生产和实际使用过程中不会对环境造成严重污染;

⑧资源丰富等。

30多年来,虽然不断有新型锂离子电池负极材料被报道出来,但是真正能够获得商业化应用的却寥寥无几,重要是因为很少有材料能兼顾以上条件。例如,虽然金属氧化物、硫化物和氮化物等以转化反应为机理的材料具有较高的比容量,但是它们在嵌锂过程中平台电位高、极化严重、体积变化大、难以形成稳定的SEI且成本高等问题使之不能真正获得实际应用。

石墨正是因为较好地兼顾了上述条件,才得到了广泛的应用。此外,虽然Li4Ti5O12容量低且嵌锂电位高,但是它在充放电过程中结构稳定,允许高倍率充放电,因此在动力锂电池和大规模储能中也有一定的应用。

负极材料的生产只是整个电池制作工艺过程中的一环,标准的制定有助于电池公司对材料的优劣做出评判。另外,材料在生产和运输过程中难免会受到人、机、料、环境和测试条件等因素的影响,只有将它们的各项理化性质参数标准化,才能真正确保其可靠性。

一般而言,负极材料的关键性技术指标有:晶体结构、粒度分布、振实密度、比表面积、pH、水含量、主元素含量、杂质元素含量、首次放电比容量和首次充放电效率等。

包覆沥青国家标准?

首先将沥青原料在真空负压下在高于沥青熔融温度至低于或等于320°C的温度下至少两级氧化,然后在高温340-350°C下氧化后,冷却、粉碎成为包覆沥青。

包覆沥青材料具有软化点高、各向同性好、包覆的人造石墨不粘结、不需粉碎、石墨包覆层完整等特点,从而使得所得负极材料具有高放电容量、库仑效率和长循环寿命,是目前作为锂离子电池负极材料重要部分。

锌离子电池好处?

锌电池具有以下优点:

1.电池容量大

锌电池的理论容量是由负极活性物质的量决定的。负极(锌电极)位于电池内部,正极(空气电极)紧接电池外壳内侧,而且正极活性物质是来自空气中的氧气,所以空气电极占据电池的空间非常小,因此,在相同的体积和重量下,锌空气电池内可以装填更多的负极反应物质,从而与传统电池相比,它具有更高的容量(锌空气电池的制造成本与同型号碱性锌锰电池的大体相同,但容量却是同型号碱性锌锰电池的2.5倍以上,是普通干电池的5-7倍)。

2.比能量高

锌电池理论质量比能量是1320Whkg-1,实际比能量已经达到220~300Whkg-1。

3.放电曲线平稳。

放电的时候,正极只是发生氧气的还原而空气电极本身不发生变化,负极则是锌被氧化而损耗。锌电极电压平稳,所以放电时电池电压变化小,在1.3V左右出现一个较长时间的放电平台。

4.自放电少,储存寿命好

在储存时电池的入气孔是密封的,空气电极与外界隔绝,只要阻隔空气进入锌空气电池即可使锌空气电池的电化学反应无法进行,从而电池容量损失小,容量年损失小于2%。

5.生产成本低、价格低廉

正极活性物质是空气中的氧气,无须花钱购买而且取之不尽。负极活性物质锌来源丰富、价格便宜。

6.环保无污染

锌电池摒弃了传统电池中的铅、汞、镉等有毒物质,解决了传统电池的污染问题。而且电池使用后的重要反应产物是氧化锌,可以方便的回收利用。

首次库仑效率说明什么?

首次库仑效率(initialcoulombicefficiency,ICE)是用来量化锂离子电池负极材料的一个性能指标,定义为锂离子电池在首次充放电循环中放电容量与充电容量的比值。

因为目前锂离子电池的库伦效率小于1,也就是说随着充放电循环的进行,电池电量是一直衰减的,首次库伦效率对应着锂电池人生的巅峰。