四色猜想被证明了吗

生活经验015

本文目录

四色猜想被证明了吗,第1张

  1. 三维四色定理?
  2. 四色猜想图板拼图的对立统一?
  3. 什么是四色定理?
  4. 为什么地图只需四色即可染完?
  5. 世界五大猜想的简称?

三维四色定理?

四色定理(世界近代三大数学难题之一),又称四色猜想、四色问题,是世界三大数学猜想之一。四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公共点的两条直线。很多人证明了二维平面内无法构造五个或五个以上两两相连区域,但却没有将其上升到逻辑关系和二维固有属性的层面,以致出现了很多伪反例。不过这些恰恰是对图论严密性的考证和发展推动。

计算机证明虽然做了百亿次判断,终究只是在庞大的数量优势上取得成功,这并不符合数学严密的逻辑体系,至今仍有无数数学爱好者投身其中研究。

四色猜想图板拼图的对立统一?

答:四种颜色的图板拼图只有在其四色可以用四条连线分隔开,且不能同时具有两种或以上颜色的区域时,才能满足拼图要求。也就是说,四色猜想要求的对立统一是,四种颜色的图板拼图必须满足四色可以用四条连线分隔开,且不能同时具有两种或以上颜色的区域的情况,才能满足拼图要求。

什么是四色定理?

四色定理(世界近代三大数学难题之一),又称四色猜想、四色问题,是世界三大数学猜想之一。四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公共点的两条直线。很多人证明了二维平面内无法构造五个或五个以上两两相连区域,但却没有将其上升到逻辑关系和二维固有属性的层面,以致出现了很多伪反例。不过这些恰恰是对图论严密性的考证和发展推动。

计算机证明虽然做了百亿次判断,终究只是在庞大的数量优势上取得成功,这并不符合数学严密的逻辑体系,至今仍有无数数学爱好者投身其中研究。

为什么地图只需四色即可染完?

地图只使用四种颜色,是因为四色定理的存在。四色定理是一个著名的数学定理,通俗的说法是:每个平面地图都可以只用四种颜色来染色,而且没有两个邻接的区域颜色相同。四色定理的本质就是在平面或者球面无法构造五个或者五个以上两两相连的区域。这一定理最初是由Francis Guthrie在1853年提出的猜想。1976年借助电子计算机证明了四色问题,问题也终于成为定理,这是第一个借助计算机证明的定理。

世界五大猜想的简称?

一、四色猜想

二、哥德巴赫猜想

三、费尔马猜想

四、丘成桐猜想

五、黎曼猜想

以下详解:

一、四色猜想 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。

二、哥德巴赫猜想世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。

三、费尔马猜想也叫费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。

四、丘成桐猜想“弦”理论认为,宇宙是十维时空,即通常的四维时空和一个很小的六维空间。意大利著名几何学家卡拉比提出,复杂的高维空间是由多个简单的多维空间“粘”在一起,也就意味着高维空间可通过一些简单的几何模型拼装得到。

五、黎曼猜想黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。现今世界七大数学难题中也包括黎曼猜想。