本文目录
数轴具有什么性质?
在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴(number line),它满足以下要求:
(1)在直线上任取一个点表示0这个点叫做原点(origin);
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1(向右1个单位长度),2(向右2个单位长度),3(向右3个单位长度),…;从原点向左,用类似方法依次表示-1(向左1个单位长度),-2(向左2个单位长度),-3(向左3个单位长度)…
在数轴上,除了数0要用原点表示外,要表示任何一个不为0的有理数,根据这个数的正负号确定它所在数轴的哪一边(通常正数在原点的右边,负数在原点的左边),再在相应的方向上确定它与原点相距几个单位长度,然后画上相应的点。此外,数轴上某点标1,就是从原点到该点的线段包含1个单位长度,具体长度不限。另外数轴上一个单位长度也不一定表示一个格,比如一个格你也可以标5,可以认为是坐标系出于某种需要被缩小了,这个标5的一个格其实包含了5个单位长度,只是坐标系出于某种需要被缩小,进而更好表示而已。
一.数轴的定义
在数学上,数轴就是规定了原点、正方向和单位长度的直线叫做数轴。
4.注意事项:
(1)数轴是一条特殊的直线;
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。
二、画数轴的步骤:
① 画直线,定原点
② 从原点向右(或上)的方向为正方向,从原点向左(或下)为负方向。
③ 选取适当长度为单位长度。
④ 在数轴上标出1、2、3、—1、—2、—3等各点。如图4所示。
老师,数轴的三要素是什么?
数轴的定义:规定了原点、正方向和单位长度的直线叫数轴。
其中,原点、方向和单位长度称为数轴的三要素。
1、原点:
在数学上,数轴上原点为0点,坐标系统的原点是指坐标轴的交点。它和正方向、单位长度并称为数轴的三要素,三者缺一不可。在二维直角坐标系中,原点的坐标为 (0,0)。而在三维直角坐标系中,原点的坐标为 (0,0,0)。
原点在数轴、二维和三维坐标系中起到参考基准的作用,依据此点可以计算出其他点的坐标等。
2、正方向
正方向是人们规定的一个方向,与正方向相反的是负方向。在数轴中,它是三要素之一;在坐标系中,它也是不可或缺的一部分。引入“正方向”的概念的目的是更好地分析和表示问题。
3、单位长度
一个单位的长度。单位1是人们设定的一个参考标准,单位长度就是可供参考的标准,它没有固定值,依设定而变动,不是实际的长度计量单位。
从原点到数1的距离并非是某一特定的长度计量标准。
直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个。正因为它们的这个共性,所以用直线上无数个点来表示实数。
这时就用一条规定了原点、正方向和单位长度的直线来表示实数。规定右边为正方向时,在这条直线上的两个数,右边上点表示的数总大于左边上点表示的数,正数大于零,零大于负数。
数轴的前后怎么区分?
数轴是一条有原点,正负方向的直线,以及单位长度。看数轴时,首先看正方向,其次是原点位置,然后就是长度单位。
1)数轴概念:数轴是规定了原点、正方向和单位长度的直线; (2)有理数在数轴上的表示方法,任给一个有理数把它用数轴上的点来表示,所有的有理数都可用数轴上的点来表示。
数轴方向是固定的吗?
在回答这个问题之前,先来弄清楚数轴的概念,规定了原点,正方向,单位长度的直线叫做数轴。
现在开始回答这个问题:
因为数轴的方向是规定的,一般把数轴画成水平直线,规定向右方向为正。这已经形成了一种习惯,所以说数轴方向不是固定的。